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LETTER TO THE EDITOR 

Anomalous fluctuations in surface growth 

Hong Yant, David A Kessler and Leonard M Sander 
Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109, USA 

Received 2 April 1991, in final form 24 June 1991 

Abstract. We have studied fluctuations i n  the steady State o f a  modified ballistic deposition 
model. The ensemble fluctuations of the surface width averaged over a time sequence, 
which involves temporal correlations, exhibit a peak around the previously proposed phase 
transition point in bath 2+ 1 and 3 +  I dimensions. We show that the time series of a finite 
system is self-averaging and the anomaly is in the fluctuations of the temporal correlations. 
We discuss the implications of our results i n  2+ 1 dimensions for the structure of the 
renormalization group Rows. 

Non-equilibrium surface (interface) growth problems have attracted great interest 
recently. In particular, much attention has been focused on a roughening phase 
transition between two phases with different scaling [l-61. These problems are associ- 
ated with models which are described in the continuum limit by a nonlinear stochastic 
equation 

ah A 
- - = ~ V ~ h f - ( V h ) ~ + 9 ( ~ ,  f )  
at 2 

proposed by Kardar, Parisi and Zhang (KPZ) [7]. Here h(x,  1 )  is the height of the 
interface, whose roughness we study, at position x and time 1. The first term on the 
right-hand side of ( 1 )  represents surface relaxation driven by a surface tension v, while 
the noise 9 ( x ,  1 )  in the last term is an uncorrelated white noise with Gaussian distribu- 
tion and zero mean. The nonlinear term accounts for the dependence of the growth 
velocity on the slope of the interface. 

The studies are done in d + 1 dimensions with d the dimension of the substrate 
which is perpendicular to the additional growth direction. Renormalization group 
analyses 17-91 show that, while in 1 + 1 dimensions the nonlinear term always domi- 
nates, i.e. strong-coupling scaling prevails as long as A # 0. In higher dimensions with 
d > 2 ,  it is possible to have a phase transition at some finite A between the strong- 
coupling (rough) phase and the weak-coupling (‘smooth’) phase. In the critical 
dimension d = 2, the situation is not clear. Numerical simulations have confirmed 
unambiguously that in 3 + 1 dimensions there is a phase transition at some A # 0 [3, 
5, 6, lo]. In 2+1  dimensions, however, controversy exists over whether there is a 
genuine phase transition [3, 4, 6, 101 or just a viciously slow crossover [5, 111. Tang 
et a/ [ 113 propose an exponentially slow logarithmic-to-power-law crossover scaling 
from a one-loop renormalization group analysis of the continuum KPZ equation in 

t Present address: Department of Materials Science and Engineering, Roberts Hall, FB-IO, University of 
Washington. Seattle, WA 98195, USA. 
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2 + 1  dimensions. The latest work of Hwa el d [ 1 2 1 ,  on the other hand, suggests a new 
and unusual fixed point controlling the crossover between rough and faceted growth, 
if both lattice effects and nonlinearities are included. 

As in equilibrium critical phenomena, the fluctuations of physical quantities should 
play significant roles near a phase transition point. It is important to examine the 
fluctuations in the non-equilibrium growth models, especially in critical regions. In 
principle, there are two different kinds of fluctuations present, ensemble fluctuations 
and fluctuations in a steady-state time series, both due to the noise inherent in the 
process, as represented by 7 in the KPZ equation ( I ) .  In this letter, we will study both 
of these in a modified ballistic deposition model. We find that it is the temporal 
fluctuations that have interesting properties. We will describe a conjecture about the 
phase transition in 2 +  1 dimensions that has emerged from our study. 

The dynamics of deposition in the model we study obeys: 

h(x, t + l ) = h ( x ,  f ) + l  

h ( x ' , f + l ) = m a x [ h ( x , r ) , h ( x ' , r ) ]  

with probability p, and 

h ( x ,  f + 1)  = ___ [ h(x ,  f )  + 1 + h(x' ,  1 )  fl,+1 ,I" 

with probability 1 -p. Here x is picked at random, and the sum runs over the n, nearest 
neighbours, x'. If p = 1, we recover the ballistic deposition rules, where h represents 
the height of the active zone [ 13,141, while p = 0 corresponds to the Edwards-Wilkinson 
model [15]. In a previous study of  this model [3, 16]t, we showed the existence of a 
phase tiaiisiiion beiween p = 0.2 and p 0.4 iii 3 + i dimensions. in i+ i dimensions, 
simulation results suggest a phase transition between p = 0.2 and p = 0.4 with complex 
scaling exhibited for p S 0.2. In this study, we focus on the steady state and investigate 
the fluctuations in surface width w. 

In the steady state, the width w, saturates and fluctuates significantly. We consider 
the ensemble fluctuations of . $ = ( l / N T ) Z  w: where Nr is the number of time steps 
we measure in the steady state (each time step represents a sweep over the lattice). 
The ensemble fluctuation is defined by 

where ( ) denotes an ensemble average. From (3) we can see that we actually measure 
the ensemble fluctuation of an averaged correlation in the time series. We have carried 
out our calculations on long time series to get reliable values for 5 and over 10 samples 
for the ensemble average. In figure 1 ,  we plot the relative standard deviation of 6, i.e. 
A=-/(() in 1 +  1 ,  2 +  1 and 3 + 1  dimensions, respectively. For 1 +  1 
dimensions, in figure ] ( a ) ,  barring the obvious statistical errors in the data, A monotoni- 
cally increases with decreasing p, showing no singularity on the curves, as we expect 

t We note that in [3] we presented the results far the model described here, rather than the one inadvenently 
defined there. However, these two models are in the same universality class, and both have been shown to 
exhibit the roughening phase transition and the anomalous scaling. 
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Figure 1. P against p in (a) I +  I dimensions, ( b )  2 + 1  dimensions, ( c )  3 + 1  dimensions. 

no phase transition except at p = O .  In 3 +  1 dimensions, where we know there is a 
phase transition, we observe, in figure l (c ) ,  a peak around p =0.4, in the vicinity of 
the transition point. Due to the numerical constraints and since the results are consistent 
with theoretical expectations, we have measured at only enough values to demonstrate 
the effect. For the critical dimension d = 2, there is also a peak around p = 0.3, as 
shown in figure I ( b ) .  With increase in lattice size, the peak grows higher and sharper. 
This is consistent with our previous studies [3, 161, as well as other work [4, 6, 101, 
where there is evidence to suggest a phase transition between p =0.2 and p = 0.4. The 
numerical difficulties due to the intrinsic fluctuations prevent us from getting better 
statistics. However, the data in figure 1 unambiguously demonstrate an anomaly in 
the collective fluctuations in both 2+ 1 and 3 +  1 dimensions and the lack thereof in 
1 + 1 dimensions. 

To better understand these results, let us first examine the time series of the surface 
width. In figure 2, we plot the distribution of the squared width w* in 2 +  1 dimensions 
for lattice size 100 x 100 and 4000 time steps after saturation, averaged over 40 samples. 
The inset in figure 2 shows the distribution obtained from one of those 40 samples 
which looks very erratic and noisy. However, if we take one sample and measure the 
distribution of w2 over 60 000 time steps after saturation, we get exactly the same one 
as in figure 2. Normally, we expect the longest correlation length in the steady state 
time series to be of order L', which is about 1500 time steps for L =  100 and z= 1.6 
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Figure 2. Distribution of squared width w2 in the steady state time series of 4000 time 
steps for p = 1 and lattice size 100 x 100, averaged over 40 samples. The inset shows the 
distribution obtained from only one sample. 

in 2+ 1 dimensions, so that in a sequence of 60 000 time steps we actually have ahout 
40 segments of length L‘ to average over. Thus we conclude that the time series of 
the surface width w 2  for a finite system is self-averaging in this modelt. This result 
holds for all values of p and lattice sizes we have studied. 

In figure 3, we plot the distributions for different p’s with lattice size 1OOx 100 and 
in the inset those for different lattice sizes with p = 1. If we scale w 2  by L’”, the 
distributions with different lattice sizes in the inset collapse onto a single curve. We 
have also examined the tails in figure 3 by fitting them to both power law and exponential 
forms. Generally, the exponential form gives a better fit, especially for small p’s .  An 
analytical analysis of the Edwards-Wilkinson model ( p  =0) yields an exponential 
form p ( w 2 )  - e-ov2 for the distribution. Thus, it appears that the anomaly in figure 
l ( b )  is due neither to a failure of self-averaging nor to a dangerously long tail in the 
distribution. 

In addition, we have calculated the ensemble fluctuation of w: at time f in the 
steady state. Notice that the temporal correlation is missing here. What we have found 
is a fluctuation monotonically decreasing with p ,  as measured by the standard deviation, 
in all three dimensions studied. This implies that it is the temporal correlation that is 
essential in the dynamical behaviour of the systems. This notion is also supported by 
a recent study of temporal correlations in the YKS model [IS]. In that study, we found 
that, in 2 +  1 dimensions, the correlation of the growth velocity ( u ( O ) U ( T ) )  scales with 
T as T-? e--‘? ” for a range of T, with y = 0.4 for p 3 0.4 and y = 0.8 for p = 0.2. The 
characteristic decay time T~ for p = 0.4 is much larger than that for p = 0.2 and for p > 0.4. 

Figure 4 shows plots of [ against p.  A careful examination of the graph reveals 
that there are inflexion points in the plots of 2 + 1 and 3 + 1 dimensions. Moreover, 

t Amar and Family [I71 have recently also obtained similar distributions in another context and arrived at 
the same conclusion. 
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Figure 3. Distributions of squared width w2 in  the steady state time series of 4000 time 
steps, averaged over 40 samples, for different p's with lattice Size 100 x 100. The inset shows 
the distributions far different lattice sizes with o = 1. 

with increasing lattice sizes, the inflexion points move away from p = 0. This is again 
consistent with what we have found above. 

While the results in 3+ 1 dimensions are generally expected and understood, the 
ones in 2+ 1 dimensions are still puzzling. Tang et al [ 111 suggest that for the continuum 
KPZ equation there should be a slow crossover. This, however, cannot account for all 
the effects we have seen. The results presented above and those from previous simula- 
tions [3 ,4,6,  10, 161 seem to indicate that, at least for the lattice sizes we have studied 
in 2 + 1  dimensions, there is a point p c ,  such that for p > p c ,  systems flowt to the 
strong-coupling fixed point, while for p < p c ,  systems flow to the weak-coupling fixed 
point. To make the renormalization group analysis and the simulation results consistent, 
it is necessary that the renormalization group flow should be intrinsically two 
dimensional, so that the system with p < p c  can flow, at intermediate length scales, 
towards the unstable weak-coupling fixed point and turn at some larger length scale 
to follow the crossover to the strong-coupling phase. It is, however, not clear to us at 
present what physical parameter characterizes this second dimension. Hwa et a/ [ 121 
point out that the discreteness in heights can give rise to anomalous scaling. However, 
it seems unlikely to us that this is responsible for the transition at p c ,  since in our 
modified ballistic deposition model [3] and in a direct simulation on the KPZ equation 
[ZO], where this same effect has been observed, the surface heights are not quantized. 
Also, an apparently analogous transition is seen in a directed polymer version of the 
problem [ 101, where again the variable equivalent to the height is continuous. 

In this two-dimensional flow diagram, there could be another, doubly unstable, 
fixed point corresponding to p c ,  which controls the flows of the system at intermediate 
length scales. Though the nature of this unstable fixed point is not clear at this point, 
this notion might explain why the system with small p exhibits complex scaling relations 

t The ward 'Row' here means the direction for the system l o  evolve when the system size is increased 
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Figure 4. 5 against p in ( a )  1 + I  dimensions, ( b )  2 +  I dimensions. ( e )  3 +  1 dimensions. 

[3] for p < p c ,  since the system is crossing over to the singly unstable weak-coupling 
fixed point. We conjecture that the point pc  is an unstable critical point which decides 
in which direction the system should flow, though the ultimate flow is presumably 
always towards strong-coupling for p # p c .  Closer to this point, the system would take 
a longer time to choose, in a manner similar to critical slowing down in equilibrium 
critical phenomena, We could define a time scale [ l ]  r - [ p - p c [ - ’  to characterize this 
situation. It is this scenario that may be responsible for the peaks observed both here 
and in [18] in the fluctuation of the temporal correlations for p - p c .  Although this 
conjecture OF a ’phase transition’ without a change of phase still needs to he examined 
with more numerical and analytical work, such as a real-space renormalization group 
analysis, it does seem to be reasonable and consistent with the available numerical 
and analytical results. 

In summary, we have presented numerical results on fluctuations in the steady state 
of a modified ballistic-deposition model. We have studied the ensemble fluctuations 
of the averaged surface width, which involves temporal correlations, and found a peak 
in the vicinity of the previously proposed phase transition point in both 2 +  1 and 3 +  1 
dimensions. We propose the existence of a phase transition of a special kind in 2 +  1 
dimensions to account for the current results. More studies on this idea are certainly 
warranted to understand better the behaviour of the system in 2 +  1 dimensions. 
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